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ABSTRACT

Errors inherent to the approximateness and incompleteness of the inverse Fourier transformation technique can be partly
compensated by using successive approximations. Especially interesting is the situation where it is possible to optimize the
primary approximate solution efficiently by means of repeated iterations on unchanged conditions (closed loop optimizations).
It is shown that the degree of convergence of the closed loop optimization process and the obtainable result depend on the
actual choice of Q-function. The results are similar when the closed loop optimizations are performed prior to and after
conversion into a two-indexed quasi-inhomogeneous solution employing double layer equivalents. The subject of the
optimization of the number of layers in the two-index solution is discussed and a couple of new Q-functions that are better
suited for closed loop optimizations of both converted and unconverted coatings than some of the best known existing Q-
functions are presented.

1. INTRODUCTION

The author is particularly interested in the design and production of quasi-inhomogeneous coatings with a smooth and
precise performance in a broad spectral range. Typical examples could be tristimulus-filters for colour measurements!, Y-
filters for light measurements, linearization filters for CCD based spectrometer-systems! with a limited dynamic range, and
filters for by routine calibrations of e.g. vision systems.

It is well-known that the inverse Fourier transform technique is suited for the design of the desired type of coatings.
However, it is also well-known that the technique suffers from different incompletenesses and that it builds on approximate
analytical relations. !-2->-6.7:8.9:10 1 future all problems may be solved analytically. This is, however, far from reality today.
Not only do we miss proper definitions of the spectral amplitude and phase-functions Q(k) and ®(k), we may also need to
employ different initial correction techniques!:!0 and conversion-techniques!® as well as numerical optimization
techniques!-2:57 to be able to design a coating that has the desired properties when produced.1®

A proper definition of the spectral function Q(k) is essential. But the best choice is not necessarily the one which gives the
closest fit after the first inverse Fourier transformation. When doing closed loop optimizations, the most important thing is
that the calculation converges towards the best possible solution.

The author experienced that closed loop optimizations tend to decrease the relative deviation between the desired and the
obtained spectral curves on the cost of the absolute deviation when employing different well-known Q-functions.>:%:7-8:11 This
is a problem, because we are often just as concerned with the absolute deviation between the desired and obtained filter-
curves as with the relative deviation.

The purpose of this paper is to present a couple of new Q-functions that are better suited for closed loop optimizations of
both converted and unconverted coatings. The conversion technique used is based on the application of double layer
equivalents (DLE).10:11 1¢ implies that the continuous optical admittance profile is divided into N relatively thin layer-
elements prior to the conversion. The conversion is only approximate, and the deviations increase with the relative optical
thickness of the unconverted layers. However, it appears that it is possible to convert layer-elements of an unexpected large
optical thickness, when the layer-elements are converted alternately into HL-equivalents and LH-equivalents. It is shown that
two-index solutions composed of relative thick layer-elements still are suited for closed loop optimizations, and that it is
possible to reduce errors inherent to a number of approximations introduced in a realistic design process by closed loop
optimizations.

1,2,3,4

2. BASIC THEORY

The Fourier transform technique described here is based on the original works of Sossi and Kard.2-12:13 They showed that
it is possible to relate the spectral transmittance of an inhomogeneous non-absorbing layer to its refractive index profile n(x)
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by the approximate expression

®dnl
oo dx 2n exp(ikx) dx = Q(k) exp[i®(k)] 1)

where Q(k) is a suitable even function of the desired transmittance T(k), ®(k) is a phase function that must be an odd
function to ensure that n(x) is real, x is twice the optical distance from the centre of the inhomogeneous layer, n(x) is the
refractive index and k the wave number 27/).

Eq. (1) can be generalized to include the case of non-normal incidence by replacing the refractive index n(x) by the
corresponding optical admittance n(x) and by introducing the following expression for x

z

x=2J n(u)cosep du 2)

where 8, is the angle of propagation in the medium of index n(x), and where z is the geometrical coordinate within the layer.
Applying a Fourier transformation to Eq. (1) and integrating with respect to x we have

( 2 (0K )
nx) = noexp\ mJg k sin[®(K) - kx] dk 3
With n(x) expressed in discrete numbers, we evaluate the corresponding spectral performance, using conventional matrix
multiplications!* and assuming each layer element to be homogeneous.3:%:1

The optical admittance modulations tend to extend beyond the permitted optical admittance range when designing filters
which possess a high reflection in different parts of the spectrum.!-3 As reported previously!, we still find that the best way
to reduce the modulation of the optical admittance profile is to introduce the following phase function

7k T ( k -k )
Ok =  kyint Kpax -2 sl NT k- Koy

where N is a real number that is typically in the 1 - 5 range; k;;; and k,, are spectrally limiting wave numbers.

3. THE Q-FUNCTION

A proper definition of the spectral function Q(k) is essential. In the course of time a number of approximate Q-functions
have been presented which vary in accuracy.3978:15 Sossi introduced the following expression, which was also used by
Dobrowolski and Lowe.?">

@

Q&) = (172[1/T(k) - T Q)

However, this expression does not work well at high reflectance, and it is not considered further in this work. Bovard
derived some better expressions>*51

Q&) = (- In[T)] )2 (6)
Q3(k) = Arctgh( [1 - T(k)]?) ©)

The author experienced that the application of the Q,-function tends to deliver refractive index profiles with too small index-
modulation whereas the opposite is the case when the Q;-function is applied.

3.1 Iterative determination of Q(k) (closed loop optimization)

Despite the approximate nature of the Q-functions, it is possible to obtain acceptable designs by changing Q(k) iteratively
by means of successive approximations as explained by several workers.!»2:6:7 It was Sossi’s idea? to substitute back the
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obtained transmission curve into the Q(k) calculation and to add the difference between these intermediate Q-values, Q,(k),
and the original Q-values, Qq(k), to the latest Q-values, Q(k)j_l, to obtain a new and hopefully improved set of Q-values,
Q();, as expressed by

Qk); = QK);.; + [Qok) - Qu(K)] ®

The j index indicates the number of executed calculation turns when the operation is repeated several times. Especially
interesting is the situation where it is possible efficiently to reoptimize the primary approximate solution by means of closed
loop optimizations (repeated iterations on unchanged conditions). The convergence properties of the closed loop optimization
process depends on a proper definition of the approximate Q-function as well as on the approximations relation.

The relative close relation that has been observed between Q(k) and the logarithmic function made the author consider
a slightly different iteration technique

Q) = { QXK. + [Q,2(K) - Q,2(K)] }2 ©

It appears that the speed of convergence drops with a factor of about 2 when this equation is applied instead of the original.
However, the improvements of the designs that may be achieved are nearly identical, and there is no clear tendency that one
relation should be better than the other in terms of the quality of the designs obtained.

More interesting is that we are to see that the obtainable results clearly depend on the actual choice of Q-function. However,
we will derive a couple of new Q-functions at first.

3.2 The narrow-banded reflection related Q-function.

Imagine that we want to design a narrow-banded single reflectance filter with a half-width of Ak and maximum reflection
at the wave number k; (normal incidence). In this case, the following relation can be derived from Eq.(1)

n’(x) sin(xAk/2)
n(x) = 4Qk;) mx  cosk;x (10)

Assuming a sufficient narrow-banded reflection (A < k) the following equation appears that describes the refractive index
profile

(&Qﬂ.ﬁl ) 20,4k Q(k;)
n(x) = n,expl 7 k; sink;x/ ~ n,+ w k; sinkx 11)

This equation obviously describes a rugate structure with an average index n, and an index modulation n, of

4n,Ak Q(k,)
= 71 k 12)

According to ref.[1], we have the following alternative expression for n,

41,04(k))
n, = KOT, (13)

where OT,, is the total optical thickness of the coating and where Q;(k,) is expressed by Eq. (7).
By comparison of Eqgs. (12) and (13) the following expression appears

2Q3(k;).
Qk;) = OT,Ak (14)

It is also possible to estimate an expression for Ak on the basis of the relations in refs. [1, 16]. The approximate width
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of the range of maximum reflection is

Ak, = nk;/(2n,) = 2Qy(k;)/OT (15)
and the difference in wave numbers between the two closest points around the central dip where the rugate is fully
transmitting is

Akg = 27/0T,, (1 + [Qa(k;)/7H)1? (16)
leading to the approximate expression for the half-width Ak

Ak x (Ak, + Akp) = 1/OT, (Qs(k)/m + (1 + [Q(kp/aIH)1?) a7
The resultant Q-function

Qi) = QR/(QK)/T + (1 + [Qsk)/mH)!) (18)

fulfils the essential requirements that

Qk) =0 for T(k) = 1 (19)
and

do’(x)

dTk) =-1 forTk) =1 20)

that was mentioned in ref. [7].
This does also apply for the following Q-function which is considered

Qs(k) = Q3(®)/(1 + [Q (k)/1H!1? 1)

4. CLOSED LOOP OPTIMIZATION

In the following we test the functioning of the four Q-functions Q,(k), Q;(k), Q4(k) and Qs(k) in a closed loop optimization
process. In each case, we try to closed loop optimize a coating by doing repeated iterations on the Q-function leaving the
conditions unchanged. The overall performance of the coating is expressed by means of two merit-values plotted for the first
one hundred calculation turns.

The merit function M-abs is a measure of the average absolute deviation between the transmission values of the desired
and the present spectral curves in a selected range of wave numbers kj toky,

(._1. m )1/2
M-abs = | N, ¥ AT?(k,)
i=j

(Ny=m-j+1) 2)

whereas the merit function M-rel is a measure of the corresponding relative deviation

(_1 m ATZQQ)) 12
Merel = \N_, ¥ TXk)
i=j

(23)
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4.1 The Gaussian shaped reflection filter

The first filter we want to design is a Gaussian shaped reflection filter. This type of filter was selected for the first test of
the calculations for the following reasons: The characteristic shows both low and high reflection’ Rpax = 99%), but the
transition between high transmission and high reflection is smooth in such a way that the initial corrections applied in ref.
[1] are not necessary. Furthermore, it is possible to keep the refractive index profile within a reasonable refractive index
range, although, we intend to achieve a peak-reflection of 99%.

Tain % Four Q-functions
100 Z
- Figure 1. Bold curve is the Gaussian shaped rejection filter we
o0 k- RS want to design. The remaining 4 curves are the transmission
3 s curves obtained as the result of the first inverse Fourier
e R sy transformation when the different Q-functions are applied. The
) ey ,;" total optical thickness of the coating is set to be 7um.
~ 3 .
\l‘ \\ -_.. ".‘ ./I ‘_/
40 - \_. \ 04 YA
- S\ [/ /
2+ AN y/ s
\~. 02 /" 05 03
0 . L X . .
400 500 600 700 nm

The bold curve in figure 1 shows the transmission curve of the Gaussian shaped rejection filter we want to design. The
remaining 4 curves are the transmission curves obtained as the results of the first inverse Fourier transformation when the
different Q-functions are applied. We note that the peak reflection is nearly obtained by means of the Q;-function whereas
this is far from the case when the new Q,-function is applied. Furthermore, we note that the second-largest peak reflection
is obtained by means of the new Qs-function lying slightly underneath the Q,-curve. It is obvious that none of the results
obtained by now are satisfactory. In the following we discuss the situation where the curves are closed loop optimized by
means of successive approximations on the fixed conditions that: it is assumed that the refractive index profile passes
continuously into the boundary media and that the thin-film materials are non-dispersive; the angle of incidence is normal;
the total optical thickness of the coating is 7um; the refractive index modulations are reduced by means of the phase function
in Eq. (4) (N = 2.2); the number of k-values is 200 and the number of x-values is 100.

M-rel M-abs
0.3 0.0S
-
0.04

0.03

0.01

0.0 1 — 1 L L n 1 . L 0.00 . L A 1 — i L I it

o 20 40 60 80 approx. o 20 10 60 80 approx.

Figure 2. Plot of the merit-value M-rel as function of the Figure 3. Plot of the merit value M-abs as function of the
executed number of calculation turns in case of the design executed number of calculation turns in case of the design
of the Gaussian shaped rejection filter in fig. 1 of the Gaussian shaped rejection filter in fig. 1.

Figures 2 and 3 are plots of the two merit values M-rel and M-abs, as function of the executed number of iteration when

160/ SPIE Vol. 2046

Downloaded from SPIE Digital Library on 29 Nov 2011 to 130.226.137.71. Terms of Use: http://spiedl.org/terms



performed on the four Q-functions, Q,, Q3, Q4 and Qs. It is seen from the figures that both the relative and the absolute
deviations decrease rapidly at the beginning of the iterations. However, from some point the decrease in the relative deviation
happens on the expense of the absolute deviation, and finally both types of deviations increase again. It is obvious that none
of the calculations really converge. In each case the relative deviation decreases towards approximately the same minimum
value as marked by the black spots in figure 2 (0.090 for Q2, Q4 and QS5 and 0.093 for Q3). However, as seen from figure
3, the absolute deviations are quite different at the same positions. The best result is clearly obtained by means of the new
Q,-function whereas the worst result is obtained by means of the Q;-function. The second-best result is obtained by means
of the Qs-function, although, it functions quite similar to the Q,-function. Figure 4 shows the transmission-curve that was
obtained by means of the new Q,-function at the marked position (41 iterations) and figure 5 shows the corresponding

refractive index profile.
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Figure 4. Transmission curve that is obtained by means of
the new Q4-function after 41 iterations (see figure 2).
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Figure 6. Transmission curve obtained by means of the new
Qq4-function after 17 iterations. The bold curve is the
desired curve and the plain curve is the obtained curve.
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Figure 5. Refractive index profile corresponding to the
transmission curve in figure 4. The total optical thickness
is 7um.

The number of iterations it takes to reach the optimum
depends on the choice of Q-function. A larger number of
iterations is of course of disadvantage as to the computing
time. However, this is actually only of little importance as far,
as each calculation turn did only take about 25 seconds on a
Compac 386/20 deskpro computer.

The final choice of filter-design does of course depend on
how the designer weight the importance of the absolute
deviations to the relative deviations. In this respect a slower
convergence of the calculations may be considered an
advantage. Figure 6 shows the transmission curve obtained
after 17 iterations. This curve is obviously smoother than the
curve in figure 4.

5. Closed loop optimization of two-index solutions

In practice the refinement by means of the successive approximations includes a compensation of all different types of minor
approximations introduced in the calculations?. This makes the successive approximation technique a very efficient tool in
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a realistic design-situation where the conditions differ more or less from the presumptions that were made when the basic
relations were derived. Typical problems could be: the inclusion of standard substrates!, the limited optical thickness of real
thin films!-2, the limited range of refractive indices of real thin film materials®, incidence of non-perfectly collimated and
non-polarized light, and the dispersion of the refractive index of real thin film materials!®.

5.1. Conversion into two-index solution

The application of Eq.(3) implies that the thin film is non-dispersive. However, this is normally not the case!?, and
especially not at low wavelength. In a previous paper the author showed that it is possible to take the dispersion of the
refractive index of real thin film materials into account when the continuous optical admittance profile is converted into a
quasi-inhomogeneous two-index solution and reoptimized by means of closed loop optimizations prior to the production. 10

The conversion technique!? is easily modified to include the case of non-normal incidence of light, and it appears to be
possible to design coatings that can be applied for non-polarized light at angles of incidence of up to +- 20° by specifying
the state of polarization to be S in the Fourier calculations and by subsequently reoptimizing the coating to fit for non-
polarized light by means of closed loop optimizations. A practical feature of the developed technique of conversion is that
the continuous optical admittance profile is converted into the actual layer-system we have to deposit at normal incidence.

However, the main reason why we perform a conversion of the continuous admittance profile prior to the production is
of course that we have developed a proprietary process steering system that makes it possible to produce the coatings
designed by means of conventional vacuum-techniques.

5.2 Optimization of the number of layers in the two-index solution

The conversion technique that is based on the application of double layer equivalents implies that the continuous optical
admittance profile is divided into N relatively thin layer-elements prior to the conversion. In practice these layer-elements
are equivalent to the N sampling elements of the continuous optical admittance profile used for the calculation of the
transmission curve. Consequently, the criterion for the conversion is a sampling-criterion as expressed by

OT = OT,/N = n,t,cos6, < A (24
that origins from the first order approximations performed onto the sine and cosine functions in refs. [10] and [11]
1 i®, /1, ]

inp<1>p 1

cos<I>p isin<I>p/np
(25

22

o

ir)psin<I>p cos<I'»p

In the following we name the characteristic matrix of the unconverted layer My’ and the characteristic matrix of the double
layer equivalent by M.

It is obvious that the conversion is only approximate and that the deviations increase with the relative optical thickness of
the unconverted layers. However, the conversion technique is preferential to the conventional Herpin conversion
technique!®-17 in the respect that it is single stepped and suited for fast closed loop optimizations of the approximate two-
indexed solution. 10

It is of interest to investigate what happens when the optical thickness of the layer-elements is enhanced prior to the
conversion. Relaxing the demand of Eq. (24) the zero-order approximation of cos(<I>p) soon becomes too inexact. The exact

expressions corresponding to the matrix-elements of a HL-double layer equivalent are:

Mp;1 = cos® ycos®yy - (M /ny)sin® ysind®, (26)
M, = cos®,ysin®; /1y + cos®p sin® u/ny @n
Mp;; = nicos® ysin®,; + nycosd,sind y (28)
M5, = cos® pcos® ;- (My/ny)sin® psin® ;. (29)
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It appears that the expressions for M, and My, differ. Furthermore they interchange in case of a LH-double layer
conversion.

The relative deviations between the matrix-elements of the characteristic matrix of the equivalent, M,, and the unconverted
layer, M_’, were calculated as function of the refractive index of the un-converted layer, n,, in the case of normal incidence
of light, ny; = 2.35, n; = 1.3 and OT/A = 0.05. Figure 7 is a graphical illustration of the results obtained. The dotted curve
belongs to My,;,, the dashed curve to M5 and the solid curves to M,;; and M2,. The uppermost curve belongs to My
in case of a HL-equivalent. Otherwise it belongs to My5,. In figure 8 the relative deviations have been plotted as function
of the relative optical thickness of the un-converted layer, OT/J, in case of normal incidence of light, ny = 2.35,n; = 1.3
and n, = 1.8.

(Mp-Mp’> Mp’ OT-lambda fixed at 0.05
+ 2%

Figure 7. The relative deviations between the matrix elements
of the characteristic matrix of the double layer equivalent, MP,
and the unconverted layer, M’, as function of the refractive
index of the un-converted layer, n,, in the case of normal
-k incidence of light, ny = 2.35, o = 1.3 and OT/X = 0.05.

(Mpy; and My, —, M5 ..o, Mppy —).

_ oy I ' 1 L 1
1.2 [ 1.6 1.8 2.0 2.2 np

(Mp-Mp’>Mp’ np fixed at 1.8

+ B%Z

+ 4% -

Figure 8. The relative deviations between the matrix elements
B mter of the characteristic matrix of the double layer equivalent, M,,,
and the unconverted layer, M_’, as function of the relative
optical thickness of the un-converted layer, OT/J, in case of
-4z normal incidence of light, ny=2.35, n; =1.3 and o, = 1.8.

(Mp; and My =, Mypp ooy Mgy —).

- 8% 1 —_ L L

o 0.02 0.04 0.06 0.08 oTL

When the optical thickness of the unconverted layer is enhanced the largest deviations obviously occur within MP“ and
Mp22 and at medium values of n,. Furthermore it appears that these deviations are of equal amount but opposite sign.
Labelling the relative deviation of Mp;; by a

0<a<l (30)

and the matrix-elements of Mp’ by A, B, C and A, this may be expressed as

(1+a)A iB
31

M “[

iC (1-a)A
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(1-w)A B
(32)

Mg =

iC  (1+a)A

‘When comparing Eqgs. (31) and (32) and taking into account the influence of the matrix-element of the overall system-matrix
on the obtained transmission-curve, it is obvious that the influence of the deviations may be reduced by converting the layer-
elements alternately into HL-equivalents and LH-equivalents. Furthermore, this reduces the total number of layers in the
approximate two-index solution to be (N + 1), which should be compared to the total number of layers in a conventional
Herpin conversion which is somewhere between (2N + 1) and 3N.16-17

The optimal number of layers in the two-index solution is experienced to be approximately four times the number of cycles
on the optical admittance profile. A considerably larger number of layers is not experienced to be of advantage. At to low
numbers strong reflections occur at the low-wavelength range.

5.3 The modified Y-filter for slightly non-normal incidence.

The second filter we want to design is a modified Y-filter for CIE colour measurements (see figure 9). This time we are
going to try the closed loop optimizations on a realistic design-situation where the conditions are much more complicated
than in the first example where we designed the Gaussian rejection filter.

Tin ¥ Modified Y—filter This time the conditions are as follows: it is assumed that the
100 filter should be applied for an angle of incidence of 6 degrees

[ and non-polarized light; the thin film materials are ZnS and
80 Misch Fluoride!© and the dispersion of the materials is taken

into account as explained in ref. [10]; the total optical
thickness of the filter is Sum and the limited optical thickness
of the filter is taken into account by doing corrections on the
characteristics as explained in ref. 1. The optical admittance
modulations are reduced by application of the phase function
in Eq. (4) (N = 2.2); the optical admittance profile is
truncated to the boundaries of the permitted range® when
. ) . ) S extending beyond them (the optical thickness of each layer
° 400 500 £00 200 m element is left unchanged); the filter is deposited onto a BK7
- - - glass substrate and cemented with a cover glass and the
Figure 9 Bold curve shows the dem'refl modified Y-filter. missing adaptation to the boundary media is compensated by
The'plam curve shows the transmission curve that was overlaying quintic matching layers as explained in ref. 1; the
f)btau}ed by means of the new Qg-function after 66 pymber of k-values is 100 and the number of x-values is 80,
1terations. which is approximately 4 times the number of cycles on the
optical admittance profile; the optical admittance profile is
converted into a two-index solution by means of the developed conversion technique and the whole thing is closed loop
optimized by means of successive approximations. The Merit-calculations cover the wavelength range from 400nm to 750nm
(see ref. 10 for comments on the wavelength range below 400nm).

The figures 10 and 11 are plots of the two merit values, M-rel and M-abs, as function of the executed number of iterations
when performed on the four Q-functions, Q,, Q3, Q4 and Q5. When compared to the figures 3 and 4, it appears that the
tendencies are once again the same. It is apparent that none of the calculations really converge. Both the relative and the
absolute deviations decrease rapidly at the beginning of the iterations but suddenly an optimum is reached (marked by dark
spots). Once again the relative deviation decreases to approximately the same limit in case of the 3 Q-functions Q,, Q4 and
Qs (=~ 0.224) whereas the result is worse in case of the Q;-function (0.251). And according to figure 11, the absolute
deviations are again quite different at the same positions. The best result is definitely obtained by means of the new Q-
function whereas the worst result is obtained by means of the Q;-function. The second-best result is obtained by means of
the Qs-function, although, it functions quite similar to the Q,-function. The plain curve in figure 9 shows the transmission-
curve obtained by means of the new Q,-function at the marked position (66 iterations). Figure 12 shows the corresponding
optical admittance profile and figure 13 is the two-indexed conversion of this profile.
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Figure 10. Plot of the merit-value M-rel as function of the Figure 11. Plot of the merit value M-abs as function of the

executed number of calculation turns in case of the design executed number of calculation turns in case of the design
of the modified Y-filter in figure 9. of the modified Y-filter in figure 9.
n Optical Admittance Profile n Obtained 2-Index—Solution
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Figure 12. The optical admittance profile corresponding to Figure 13. Two index convert of the optical admittance
the optimized transmission curve in figure 9. profile in fig. 12. The number of layers is 81.

6. DISCUSSION

It is interesting to note the close mathematical relationship between the new Q4 and Qs-functions and the old Q;-function.
The difference between them is the bandwidth estimate used in the denominator in Q4 and Qs. Maybe an even better Q-
expression may be obtained by choosing the right expression for the bandwidth.

It is also interesting to note the close functional relation between the new Qs-function and the old Q,-function.

7. CONCILUSIONS

It was shown that it is possible to compensate for a number of errors inherent to the inverse Fourier transformation
technique by changing the Q-function iteratively. However, the obtainable result obviously depends on the definition of the
Q-function.

Two new Q-functions were derived and it was shown that they perform better in a closed loop optimization process than
some of the most well-known Q-functions.

The results are similar when the closed loop optimizations are performed prior to and after the conversion into a quasi-
inhomogeneous conversion employing double layer equivalents.

The optimization of the number of layers in the two-indexed solution was discussed, and it was shown that it is possible
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to convert unexpected thick layer elements with the developed technique.
Finally, it was demonstrated that it is possible to take into account slightly non-normal incidence of non-polarized light.
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